massimi e minimi assoluti

Messaggioda enzo818 » 01/07/2011, 16:52

ciao a tutti, ho un dubbio nella parte finale di questo esercizio...spero che qualcuno mi possa aiutare al piu' presto perche' lunedi' ho l'esame di analisi 2 !! :D

Studiare massimi e minimi assoluti della funzione $f(x; y)$ =$(x^2 - y^2) (x-2)$
nel triangolo A di vertici O(0; 0), P (2; 2) e Q (2; 2).

parto col fare le derivate parziali rispetto a x e a y per metterle a sistema e cercare i punti stazionari:

$fx$ = $3x^2 -4x -y^2=0 $
$fy$ = $-2xy+4y=0 $

risolvendo il sistema trovo i punti :

$A( 0;0) B( 4/3;0) C(2;-2) D(2;2)$

a questo punto si vede che A , B e D non sono interni al vincolo e quindi non vanno considerati,

mi rimane il punto C. Come faccio a determinare se è di massimo o di minimo assoluto?

naturalmente ho trovato anche le equazioni delle rette formanti il triangolo, e sono

1) $ 0<=x<=2 ; y=x$
2) $ 0<=x<=2 ; y=-x$
3) $ x=2 ; -2<=y<=2$
enzo818
New Member
New Member
 
Messaggio: 41 di 53
Iscritto il: 29/10/2010, 19:50

Messaggioda lawrencetb » 01/07/2011, 16:58

Potresti calcolare la matrice hessiana e vedere se ti da informazioni utili. In alternativa potresti cercare delle sezioni per vedere se non è niente oppure max/min.
Ovviamente devi poi andare a controllare sulla frontiera.
lawrencetb
New Member
New Member
 
Messaggio: 47 di 74
Iscritto il: 17/03/2011, 02:37

Messaggioda enzo818 » 01/07/2011, 17:12

ti riferisci all'hessiano orlato? sulla frontiera devo vedere solo i punti che ho trovato sulla frontiera e ai vertici giusto?
enzo818
New Member
New Member
 
Messaggio: 42 di 53
Iscritto il: 29/10/2010, 19:50

Messaggioda Thiezar » 01/07/2011, 17:18

Per avere informazioni sul punto C devi calcolare il valore della funzione in questo punto (che sarà quindi $ f(2;-2) $). Ottenuto tale valore non puoi ancora sapere se è di massimo o minimo perchè non hai nessun altro valore con cui confrontarlo.
Questi altri valori sono da ricercare sul bordo del dominio. Di sicuro i vertici del dominio (punti O, P e Q) sono punti stazionari. Altri punti stazionari potrebbero trovarsi sul bordo, ovvero sui lati del triangolo, e sono i punti in cui il gradiente è perpendicolare al dominio.

Questo è sicuro ma non ho mai capito bene come controllare che il gradiente sia perpendicolare al dominio quindi se qualcuno vuole migliorare la mia risposta con questa spiegazione gliene sarò molto grato anche io.

Una volta che hai i valori di tutti questi punti stazionari, li confronti tra loro e il valore più basso sarà il minimo assoluto, mentre quello più alto sarà il massimo assoluto.
Thiezar
Starting Member
Starting Member
 
Messaggio: 8 di 29
Iscritto il: 30/06/2011, 21:30

Messaggioda enzo818 » 01/07/2011, 18:00

scusa mi sono sbagliato...era il punto B nel dominio...il valore della funzione nel punto B è $-32/27$.
ora come faccio a vedere se i vertici sono punti stazionari? e per il gradiente perpendicolare al dominio come devo procedere?

edit: i vertici sono punti stazionari...li ho trovati prima...calcolato il valore della funzione nei 3 punti il risultato è sempre 0. per quanto riguarda il gradiente perpendicolare invece? come posso fare?
enzo818
New Member
New Member
 
Messaggio: 43 di 53
Iscritto il: 29/10/2010, 19:50

Messaggioda Thiezar » 01/07/2011, 19:34

I vertici sono SEMPRE stazionari proprio perchè sono vertici. La funzione che descrive il dominio, quindi il triangolo è spezzata nei vertici quindi non ammette derivate in quei punti.
Per il gradiente perpendicolare posso dirti che se hai delle rette orizzontali o verticali basta annullare una delle due componenti del gradiente. Se le rette invece sono oblique o peggio ancora curve non saprei proprio. Attendo insieme a te una risposta da chi ne sa qualcosa di più :-)
Thiezar
Starting Member
Starting Member
 
Messaggio: 10 di 29
Iscritto il: 30/06/2011, 21:30

Messaggioda enzo818 » 01/07/2011, 19:51

se sono delle curve forse conviene utilizzare i moltiplicatori di Lagrange... e quindi non si pone il problema
enzo818
New Member
New Member
 
Messaggio: 44 di 53
Iscritto il: 29/10/2010, 19:50

Messaggioda enzo818 » 02/07/2011, 16:18

se qualcuno puo' darmi una mano nella conclusione di questo esercizio gli sarei molto grato...sono disperato :(
enzo818
New Member
New Member
 
Messaggio: 45 di 53
Iscritto il: 29/10/2010, 19:50

Messaggioda matematico91 » 02/07/2011, 16:37

il punto Q è (2,-2)? dammi una conferma e ti rispondo subito
matematico91
Junior Member
Junior Member
 
Messaggio: 115 di 213
Iscritto il: 05/06/2011, 11:13

Messaggioda enzo818 » 02/07/2011, 16:41

si si :)
enzo818
New Member
New Member
 
Messaggio: 47 di 53
Iscritto il: 29/10/2010, 19:50

Prossimo

Torna a Analisi Matematica

Chi c’è in linea

Visitano il forum: Nessuno e 4 ospiti